Affiliation:
1. University of California, San Diego, CA
Abstract
The rapid evolution of large-scale worms, viruses and bot-nets have made Internet malware a pressing concern. Such infections are at the root of modern scourges including DDoS extortion, on-line identity theft, SPAM, phishing, and piracy. However, the most widely used tools for gathering intelligence on new malware -- network honeypots -- have forced investigators to choose between monitoring activity at a large scale or capturing behavior with high fidelity. In this paper, we describe an approach to minimize this tension and improve honeypot scalability by up to six orders of magnitude while still closely emulating the execution behavior of individual Internet hosts. We have built a prototype honeyfarm system, called
Potemkin
, that exploits virtual machines, aggressive memory sharing, and late binding of resources to achieve this goal. While still an immature implementation, Potemkin has emulated over 64,000 Internet honeypots in live test runs, using only a handful of physical servers.
Publisher
Association for Computing Machinery (ACM)
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献