Data networks as cascades

Author:

Feldmann A.1,Gilbert A. C.1,Willinger W.1

Affiliation:

1. AT&T Labs - Research, Florham Park, NJ

Abstract

In apparent contrast to the well-documented self-similar (i.e., monofractal) scaling behavior of measured LAN traffic, recent studies have suggested that measured TCP/IP and ATM WAN traffic exhibits more complex scaling behavior, consistent with multifractals. To bring multifractals into the realm of networking, this paper provides a simple construction based on cascades (also known as multiplicative processes) that is motivated by the protocol hierarchy of IP data networks. The cascade framework allows for a plausible physical explanation of the observed multifractal scaling behavior of data traffic and suggests that the underlying multiplicative structure is a traffic invariant for WAN traffic that co-exists with self-similarity. In particular, cascades allow us to refine the previously observed self-similar nature of data traffic to account for local irregularities in WAN traffic that are typically associated with networking mechanisms operating on small time scales, such as TCP flow control.To validate our approach, we show that recent measurements of Internet WAN traffic from both an ISP and a corporate environment are consistent with the proposed cascade paradigm and hence with multifractality. We rely on wavelet-based time-scale analysis techniques to visualize and to infer the scaling behavior of the traces, both globally and locally. We also discuss and illustrate with some examples how this cascade-based approach to describing data network traffic suggests novel ways for dealing with networking problems and helps in building intuition and physical understanding about the possible implications of multifractality on issues related to network performance analysis.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3