Learning Multiple Diagnosis Codes for ICU Patients with Local Disease Correlation Mining

Author:

Wang Sen1,Li Xue2,Chang Xiaojun3ORCID,Yao Lina4,Sheng Quan Z.5,Long Guodong6

Affiliation:

1. Griffith University, Australia

2. The University of Queensland, Queensland, Australia

3. Carnegie Mellon University, USA

4. The University of New South Wales, NSW, Australia

5. Macquarie University, NSW, Australia

6. University of Technology Sydney, Ultimo NSW, Australia

Abstract

In the era of big data, a mechanism that can automatically annotate disease codes to patients’ records in the medical information system is in demand. The purpose of this work is to propose a framework that automatically annotates the disease labels of multi-source patient data in Intensive Care Units (ICUs). We extract features from two main sources, medical charts and notes. The Bag-of-Words model is used to encode the features. Unlike most of the existing multi-label learning algorithms that globally consider correlations between diseases, our model learns disease correlation locally in the patient data. To achieve this, we derive a local disease correlation representation to enrich the discriminant power of each patient data. This representation is embedded into a unified multi-label learning framework. We develop an alternating algorithm to iteratively optimize the objective function. Extensive experiments have been conducted on a real-world ICU database. We have compared our algorithm with representative multi-label learning algorithms. Evaluation results have shown that our proposed method has state-of-the-art performance in the annotation of multiple diagnostic codes for ICU patients. This study suggests that problems in the automated diagnosis code annotation can be reliably addressed by using a multi-label learning model that exploits disease correlation. The findings of this study will greatly benefit health care and management in ICU considering that the automated diagnosis code annotation can significantly improve the quality and management of health care for both patients and caregivers.

Funder

Australian Research Council Discover Project

Australian Research Council Linkage Project

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3