Topical web crawlers

Author:

Menczer Filippo1,Pant Gautam2,Srinivasan Padmini3

Affiliation:

1. Indiana University, Bloomington, IN

2. University of Utah, Salt Lake City, UT

3. University of Iowa, Iowa City, IA

Abstract

Topical crawlers are increasingly seen as a way to address the scalability limitations of universal search engines, by distributing the crawling process across users, queries, or even client computers. The context available to such crawlers can guide the navigation of links with the goal of efficiently locating highly relevant target pages. We developed a framework to fairly evaluate topical crawling algorithms under a number of performance metrics. Such a framework is employed here to evaluate different algorithms that have proven highly competitive among those proposed in the literature and in our own previous research. In particular we focus on the tradeoff between exploration and exploitation of the cues available to a crawler, and on adaptive crawlers that use machine learning techniques to guide their search. We find that the best performance is achieved by a novel combination of explorative and exploitative bias, and introduce an evolutionary crawler that surpasses the performance of the best nonadaptive crawler after sufficiently long crawls. We also analyze the computational complexity of the various crawlers and discuss how performance and complexity scale with available resources. Evolutionary crawlers achieve high efficiency and scalability by distributing the work across concurrent agents, resulting in the best performance/cost ratio.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crawl Smart: A Domain-Specific Crawler;Lecture Notes in Electrical Engineering;2023-11-30

2. Summarizing Dark Web Services with TF-IDF and LSA;2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA);2023-08-18

3. An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges;Artificial Intelligence Review;2023-04-09

4. The Crawler Strategy Based on Adaptive Immune Optimization;Lecture Notes in Electrical Engineering;2023

5. An efficient focused crawler using LSTM-CNN based deep learning;International Journal of System Assurance Engineering and Management;2022-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3