Frequent closed itemset based algorithms

Author:

Yahia S. Ben1,Hamrouni T.1,Nguifo E. Mephu2

Affiliation:

1. Faculté des Sciences de Tunis, Campus Universitaire, Tunis, Tunisie

2. IUT de Lens, Lens Cedex, France

Abstract

As a side effect of the digitalization of unprecedented amount of data, traditional retrieval tools proved to be unable to extract hidden and valuable knowledge. Data Mining, with a clear promise to provide adequate tools and/or techniques to do so, is the discovery of hidden information that can be retrieved from datasets. In this paper, we present a structural and analytical survey of <u>f</u>requent <u>c</u>losed <u>i</u>temset (FCI) based algorithms for mining association rules. Indeed, we provide a structural classification, in four categories, and a comparison of these algorithms based on criteria that we introduce. We also present an analytical comparison of FCI-based algorithms using benchmark dense and sparse datasets as well as "worst case" datasets. Aiming to stand beyond classical performance analysis, we intend to provide a focal point on performance analysis based on memory consumption and advantages and/or limitations of optimization strategies, used in the FCI-based algorithms.

Publisher

Association for Computing Machinery (ACM)

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3