Diversifying Focused Testing for Unit Testing

Author:

Menéndez Héctor D.1ORCID,Jahangirova Gunel2,Sarro Federica3,Tonella Paolo2,Clark David3

Affiliation:

1. Middlesex University London, Hendon, London, UK

2. Università della Svizzera italiana, Lugano, Svizzera

3. University College London, London, UK

Abstract

Software changes constantly, because developers add new features or modifications. This directly affects the effectiveness of the test suite associated with that software, especially when these new modifications are in a specific area that no test case covers. This article tackles the problem of generating a high-quality test suite to cover repeatedly a given point in a program, with the ultimate goal of exposing faults possibly affecting the given program point. Both search-based software testing and constraint solving offer ready, but low-quality, solutions to this: Ideally, a maximally diverse covering test set is required, whereas search and constraint solving tend to generate test sets with biased distributions. Our approach, Diversified Focused Testing (DFT), uses a search strategy inspired by GödelTest. We artificially inject parameters into the code branching conditions and use a bi-objective search algorithm to find diverse inputs by perturbing the injected parameters, while keeping the path conditions still satisfiable. Our results demonstrate that our technique, DFT, is able to cover a desired point in the code at least 90% of the time. Moreover, adding diversity improves the bug detection and the mutation killing abilities of the test suites. We show that DFT achieves better results than focused testing, symbolic execution, and random testing by achieving from 3% to 70% improvement in mutation score and up to 100% improvement in fault detection across 105 software subjects.

Funder

Engineering and Physical Sciences Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Focused Test Generation for Autonomous Driving Systems;ACM Transactions on Software Engineering and Methodology;2024-06-27

2. A systematic literature review on software security testing using metaheuristics;Automated Software Engineering;2024-05-23

3. DeepAtash: Focused Test Generation for Deep Learning Systems;Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis;2023-07-12

4. ObfSec: Measuring the security of obfuscations from a testing perspective;Expert Systems with Applications;2022-12

5. Using default logic for agent behavior testing;Multiagent and Grid Systems;2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3