A Multimodal Framework for Large-Scale Emotion Recognition by Fusing Music and Electrodermal Activity Signals

Author:

Yin Guanghao1,Sun Shouqian1,Yu Dian1,Li Dejian1,Zhang Kejun2

Affiliation:

1. Zhejiang University, Hangzhou, China

2. Zhejiang University and Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Hangzhou, China

Abstract

Considerable attention has been paid to physiological signal-based emotion recognition in the field of affective computing. For reliability and user-friendly acquisition, electrodermal activity (EDA) has a great advantage in practical applications. However, EDA-based emotion recognition with large-scale subjects is still a tough problem. The traditional well-designed classifiers with hand-crafted features produce poorer results because of their limited representation abilities. And the deep learning models with auto feature extraction suffer the overfitting drop-off because of large-scale individual differences. Since music has a strong correlation with human emotion, static music can be involved as the external benchmark to constrain various dynamic EDA signals. In this article, we make an attempt by fusing the subject’s individual EDA features and the external evoked music features. And we propose an end-to-end multimodal framework, the one-dimensional residual temporal and channel attention network (RTCAN-1D). For EDA features, the channel-temporal attention mechanism for EDA-based emotion recognition is first involved in mine the temporal and channel-wise dynamic and steady features. The comparisons with single EDA-based SOTA models on DEAP and AMIGOS datasets prove the effectiveness of RTCAN-1D to mine EDA features. For music features, we simply process the music signal with the open-source toolkit openSMILE to obtain external feature vectors. We conducted systematic and extensive evaluations. The experiments on the current largest music emotion dataset PMEmo validate that the fusion of EDA and music is a reliable and efficient solution for large-scale emotion recognition.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3