Application flow control in YouTube video streams

Author:

Alcock Shane1,Nelson Richard1

Affiliation:

1. University of Waikato, Hamilton, New Zealand

Abstract

This paper presents the results of an investigation into the application flow control technique utilised by YouTube. We reveal and describe the basic properties of YouTube application flow control, which we term block sending, and show that it is widely used by YouTube servers. We also examine how the block sending algorithm interacts with the flow control provided by TCP and reveal that the block sending approach was responsible for over 40% of packet loss events in YouTube flows in a residential DSL dataset and the retransmission of over 1% of all YouTube data sent after the application flow control began. We conclude by suggesting that changing YouTube block sending to be less bursty would improve the performance and reduce the bandwidth usage of YouTube video streams.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Reference17 articles.

1. YouTube http://www.youtube.com. YouTube http://www.youtube.com.

2. Alexa Top 500 Global Sites http://www.alexa.com/topsites. Alexa Top 500 Global Sites http://www.alexa.com/topsites.

3. On dominant characteristics of residential broadband internet traffic

4. I tube, you tube, everybody tubes

5. Characteristics of YouTube network traffic at a campus network – Measurements, models, and implications

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. YouTube Dataset on Mobile Streaming for Internet Traffic Modeling and Streaming Analysis;Scientific Data;2022-06-13

2. Cross-Layer Video Synthesizing and Antenna Allocation Scheme for Multi-View Video Provisioning under Massive MIMO Networks;IEEE Transactions on Mobile Computing;2022

3. Mobile Proxy Caching for Multi-View 3D Videos with Adaptive View Selection;IEEE Transactions on Mobile Computing;2020

4. Analysis of YouTube DASH Traffic;2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom);2019-06

5. Identification of adaptive video streams based on traffic correlation;Multimedia Tools and Applications;2019-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3