Federated Multi-view Learning for Private Medical Data Integration and Analysis

Author:

Che Sicong1ORCID,Kong Zhaoming2ORCID,Peng Hao3ORCID,Sun Lichao2ORCID,Leow Alex4ORCID,Chen Yong5ORCID,He Lifang2ORCID

Affiliation:

1. China Agricultural University, Beijing, China

2. Lehigh University, Bethlehem, PA, USA

3. Beihang University, Beijing, China

4. University of Illinois at Chicago, Chicago, IL, USA

5. University of Pennsylvania, Philadelphia, USA

Abstract

Along with the rapid expansion of information technology and digitalization of health data, there is an increasing concern on maintaining data privacy while garnering the benefits in the medical field. Two critical challenges are identified: First, medical data is naturally distributed across multiple local sites, making it difficult to collectively train machine learning models without data leakage. Second, in medical applications, data are often collected from different sources and views, resulting in heterogeneity and complexity that requires reconciliation. In this article, we present a generic Federated Multi-view Learning (FedMV) framework for multi-view data leakage prevention. Specifically, we apply this framework to two types of problems based on local data availability: Vertical Federated Multi-view Learning (V-FedMV) and Horizontal Federated Multi-view Learning (H-FedMV). We experimented with real-world keyboard data collected from BiAffect study. Our results demonstrated that the proposed approach can make full use of multi-view data in a privacy-preserving way, and both V-FedMV and H-FedMV perform better than their single-view and pairwise counterparts. Besides, the framework can be easily adapted to deal with multi-view sequential data. We have developed a sequential model (S-FedMV) that takes sequence of multi-view data as input and demonstrated it experimentally. To the best of our knowledge, this framework is the first to consider both vertical and horizontal diversification in the multi-view setting, as well as their sequential federated learning.

Funder

National Key R&D Program of China

NSFC

S&T Program of Hebei

National Institutes of Health

Lehigh’s Accelerator

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3