Probabilistic Models for Contextual Agreement in Preferences

Author:

Do Loc1,Lauw Hady W.1

Affiliation:

1. Singapore Management University, Stamford Road, Singapore

Abstract

The long-tail theory for consumer demand implies the need for more accurate personalization technologies to target items to the users who most desire them. A key tenet of personalization is the capacity to model user preferences. Most of the previous work on recommendation and personalization has focused primarily on individual preferences. While some focus on shared preferences between pairs of users, they assume that the same similarity value applies to all items. Here we investigate the notion of “context,” hypothesizing that while two users may agree on their preferences on some items, they may also disagree on other items. To model this, we design probabilistic models for the generation of rating differences between pairs of users across different items. Since this model also involves the estimation of rating differences on unseen items for the purpose of prediction, we further conduct a systematic analysis of matrix factorization and tensor factorization methods in this estimation, and propose a factorization model with a novel objective function of minimizing error in rating differences. Experiments on several real-life rating datasets show that our proposed model consistently yields context-specific similarity values that perform better on a prediction task than models relying on shared preferences.

Funder

Singapore National Research Foundation under its International Research Centre @ Singapore Funding Initiative and administered by the IDMProgramme Office

Media Development Authority

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3