Resource semantics

Author:

Pym David1

Affiliation:

1. UCL and The Alan Turing Institute, London

Abstract

The Logic of Bunched Implications (BI) was introduced by O'Hearn and Pym. The original presentation of BI emphasised its role as a system for formal logic (broadly in the tradition of relevant logic) that has some interesting properties, combining a clean proof theory, including a categorical interpretation, with a simple truth-functional semantics. BI quickly found significant applications in program verification and program analysis, chiefly through a specific theory of BI that is commonly known as 'Separation Logic'. We survey the state of work in bunched logics - which, by now, is a quite large family of systems, including modal and epistemic logics and logics for layered graphs - in such a way as to organize the ideas into a coherent (semantic) picture with a strong interpretation in terms of resources. One such picture can be seen as deriving from an interpretation of BI's semantics in terms of resources, and this view provides a basis for a systematic interpretation of the family of bunched logics, including modal, epistemic, layered graph, and process-theoretic variants, in terms of resources. We explain the basic ideas of resource semantics, including comparisons with Linear Logic and ideas from economics and physics. We include discussions of BI's λ-calculus, of Separation Logic, and of an approach to distributed systems modelling based on resource semantics.

Publisher

Association for Computing Machinery (ACM)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reductive Logic, Proof-Search, and Coalgebra: A Perspective from Resource Semantics;Samson Abramsky on Logic and Structure in Computer Science and Beyond;2023

2. Matching Logic Based on Ownership Transfer;International Journal of Software Engineering and Knowledge Engineering;2022-11-28

3. Modelling Organizational Recovery;Simulation Tools and Techniques;2022

4. Engineering Ecosystem Models: Semantics and Pragmatics;Simulation Tools and Techniques;2022

5. Separation logic and logics with team semantics;Annals of Pure and Applied Logic;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3