Affiliation:
1. Fuzhou University, Fuzhou, China
2. Fujian Business University, Fuzhou, China
3. University of California, Davis, CA, USA
Abstract
As timing delay becomes a critical issue in chip performance, there is a burning desire for IC design under smart manufacturing to optimize the delay. As the best connection model for multi-terminal nets, the wirelength and the maximum source-to-sink pathlength of the Steiner minimum tree are the decisive factors of timing delay for routing. In addition, considering that X-routing can get the utmost out of routing resources, this article proposes a Timing-Driven X-routing Steiner Minimum Tree (TD-XSMT) algorithm based on two-stage competitive particle swarm optimization. This work utilizes the multi-objective particle swarm optimization algorithm and redesigns its framework, thus improving its performance. First, a two-stage learning strategy is presented, which balances the exploration and exploitation capabilities of the particle by learning edge structures and pseudo-Steiner point choices. Especially in the second stage, a hybrid crossover strategy is designed to guarantee convergence quality. Second, the competition mechanism is adopted to select particle learning objects and enhance diversity. Finally, according to the characteristics of the discrete TD-XSMT problem, the mutation and crossover operators of the genetic algorithm are used to effectively discretize the proposed algorithm. Experimental results reveal that TSCPSO-TD-XSMT can obtain a smooth trade-off between wirelength and maximum source-to-sink pathlength, and achieve distinguished timing delay optimization.
Funder
National Natural Science Foundation of China
State Key Laboratory of Computer Architecture
Fujian Natural Science Funds
Fuzhou University
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Management Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献