Generating Digital Painting Lighting Effects via RGB-space Geometry

Author:

Zhang Lvmin1,Simo-Serra Edgar2,Ji Yi3,Liu Chunping3

Affiliation:

1. Soochow University/Style2Paints, China

2. Waseda University/JST PRESTO, Japan

3. Soochow University, China

Abstract

We present an algorithm to generate digital painting lighting effects from a single image. Our algorithm is based on a key observation: Artists use many overlapping strokes to paint lighting effects, i.e., pixels with dense stroke history tend to gather more illumination strokes. Based on this observation, we design an algorithm to both estimate the density of strokes in a digital painting using color geometry and then generate novel lighting effects by mimicking artists’ coarse-to-fine workflow. Coarse lighting effects are first generated using a wave transform and then retouched according to the stroke density of the original illustrations into usable lighting effects. Our algorithm is content-aware, with generated lighting effects naturally adapting to image structures, and can be used as an interactive tool to simplify current labor-intensive workflows for generating lighting effects for digital and matte paintings. In addition, our algorithm can also produce usable lighting effects for photographs or three-dimensional rendered images. We evaluate our approach with both an in-depth qualitative and a quantitative analysis that includes a perceptual user study. Results show that our proposed approach is not only able to produce favorable lighting effects with respect to existing approaches, but also that it is able to significantly reduce the needed interaction time.

Funder

JST PRESTO

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of digital technology in painting using new media and big data;Soft Computing;2023-06-30

2. ShadowGAN for Line Drawings Shadow Generation;Artificial Neural Networks and Machine Learning – ICANN 2023;2023

3. Visual Planarization in Oil Painting Techniques in Digital Information Age;International Transactions on Electrical Energy Systems;2022-09-22

4. Stroke Based Shadow Generation For Line Drawings;2022 7th International Conference on Image, Vision and Computing (ICIVC);2022-07-26

5. Fast Nonlinear Image Unblending;2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3