Computational Understanding of Visual Interestingness Beyond Semantics

Author:

Constantin Mihai Gabriel1ORCID,Redi Miriam2,Zen Gloria3,Ionescu Bogdan4

Affiliation:

1. University Politehnica of Bucharest, Romania

2. King's College London, United Kingdom

3. University of Trento, Trento, Italy

4. University Politehnica of Bucharest, Bucharest, Romania

Abstract

Understanding visual interestingness is a challenging task addressed by researchers in various disciplines ranging from humanities and psychology to, more recently, computer vision and multimedia. The rise of infographics and the visual information overload that we are facing today have given this task a crucial importance. Automatic systems are increasingly needed to help users navigate through the growing amount of visual information available, either on the web or our personal devices, for instance by selecting relevant and interesting content. Previous studies indicate that visual interest is highly related to concepts like arousal, unusualness, or complexity, where these connections are found based on psychological theories, user studies, or computational approaches. However, the link between visual interestingness and other related concepts has been only partially explored so far, for example, by considering only a limited subset of covariates at a time. In this article, we present a comprehensive survey on visual interestingness and related concepts, aiming to bring together works based on different approaches, highlighting controversies, and identifying links that have not been fully investigated yet. Finally, we present some open questions that may be addressed in future works. Our work aims to support researchers interested in visual interestingness and related subjective or abstract concepts, providing an in-depth overlook at state-of-the-art theories in humanities and methods in computational approaches, as well as providing an extended list of datasets.

Funder

UEFISCDI

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3