Quantization, channel compensation, and optimal energy allocation for estimation in sensor networks

Author:

Sun Xusheng1,Coyle Edward J.1

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

Abstract

In clustered networks of wireless sensors, each sensor collects noisy observations of the environment, quantizes these observations into a local estimate of finite length, and forwards them through one or more noisy wireless channels to the cluster head (CH). The measurement noise is assumed to be zero-mean and have finite variance, and each wireless hop is modeled as a binary symmetric channel (BSC) with a known crossover probability. A novel scheme is proposed that uses dithered quantization and channel compensation to ensure that each sensor's local estimate received by the CH is unbiased. The CH fuses these unbiased local estimates into a global one, using a best linear unbiased estimator (BLUE). Analytical and simulation results show that the proposed scheme can achieve much smaller mean square error (MSE) than two other common schemes, while using the same amount of energy. The sensitivity of the proposed scheme to errors in estimates of the crossover probability of the BSC channel is studied by both analysis and simulation. We then determine both the minimum energy required for the network to produce an estimate with a prescribed error variance and how this energy must be allocated amongst the sensors in the multihop network.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of loosely coupled data dissemination policies for resource challenged environments;2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid);2022-05

2. A Hybrid Approach-Based Energy Aware Cluster Head Selection for IOT Application;Lecture Notes in Networks and Systems;2020

3. A Matrix-Based Pair-Wise Key Establishment for Secure and Energy Efficient WSN-Assisted IoT;International Journal of Information Security and Privacy;2019-07

4. An optimal relay node selection technique to support green internet of things;Journal of Intelligent & Fuzzy Systems;2018-08-26

5. Optimal fusion rule for distributed detection in clustered wireless sensor networks;EURASIP Journal on Advances in Signal Processing;2016-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3