Theoretically Improving Graph Neural Networks via Anonymous Walk Graph Kernels
Author:
Affiliation:
1. Peking University, China
2. The Hong Kong University of Science and Technology, Hong Kong
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3442381.3449951
Reference52 articles.
1. DDGK: Learning Graph Representations for Deep Divergence Graph Kernels
2. Vikraman Arvind Frank Fuhlbrück Johannes Köbler and Oleg Verbitsky. 2020. On Weisfeiler-Leman invariance: subgraph counts and related graph properties. J. Comput. System Sci.(2020). Vikraman Arvind Frank Fuhlbrück Johannes Köbler and Oleg Verbitsky. 2020. On Weisfeiler-Leman invariance: subgraph counts and related graph properties. J. Comput. System Sci.(2020).
3. The Dynamics of Message Passing on Dense Graphs, with Applications to Compressed Sensing
4. Shortest-Path Kernels on Graphs
5. Giorgos Bouritsas Fabrizio Frasca Stefanos Zafeiriou and Michael M Bronstein. 2020. Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting. arXiv preprint arXiv:2006.09252(2020). Giorgos Bouritsas Fabrizio Frasca Stefanos Zafeiriou and Michael M Bronstein. 2020. Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting. arXiv preprint arXiv:2006.09252(2020).
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Refining computational inference of gene regulatory networks: integrating knockout data within a multi-task framework;Briefings in Bioinformatics;2024-07-25
2. Unveiling Delay Effects in Traffic Forecasting: A Perspective from Spatial-Temporal Delay Differential Equations;Proceedings of the ACM Web Conference 2024;2024-05-13
3. Inductive Graph Alignment Prompt: Bridging the Gap between Graph Pre-training and Inductive Fine-tuning From Spectral Perspective;Proceedings of the ACM Web Conference 2024;2024-05-13
4. Descriptive Kernel Convolution Network with Improved Random Walk Kernel;Proceedings of the ACM Web Conference 2024;2024-05-13
5. A Comprehensive Survey on Deep Graph Representation Learning;Neural Networks;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3