Dynamic Embeddings for Interaction Prediction

Author:

Kefato Zekarias1,Girdzijauskas Sarunas1,Sheikh Nasrullah2,Montresor Alberto3

Affiliation:

1. KTH Royal Institute of Technology, Sweden

2. IBM, USA

3. University of Trento, Italy

Publisher

ACM

Reference37 articles.

1. M. Belkin and P. Niyogi. 2003. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. M. Belkin and P. Niyogi. 2003. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation.

2. Latent Cross

3. Krisztian Buza and Ladislav Peška. 2017. Drug–target interaction prediction with Bipartite Local Models and hubness-aware regression. Krisztian Buza and Ladislav Peška. 2017. Drug–target interaction prediction with Bipartite Local Models and hubness-aware regression.

4. Deep Neural Networks for YouTube Recommendations

5. Hanjun Dai Yichen Wang Rakshit Trivedi and Le Song. 2016. Deep Coevolutionary Network: Embedding User and Item Features for Recommendation. arxiv:1609.03675 [cs.LG] Hanjun Dai Yichen Wang Rakshit Trivedi and Le Song. 2016. Deep Coevolutionary Network: Embedding User and Item Features for Recommendation. arxiv:1609.03675 [cs.LG]

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empowering Few-Shot Recommender Systems With Large Language Models-Enhanced Representations;IEEE Access;2024

2. Contrastive sequential interaction network learning on co-evolving Riemannian spaces;International Journal of Machine Learning and Cybernetics;2023-09-29

3. Triple Structural Information Modelling for Accurate, Explainable and Interactive Recommendation;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18

4. SINCERE: Sequential Interaction Networks representation learning on Co-Evolving RiEmannian manifolds;Proceedings of the ACM Web Conference 2023;2023-04-30

5. Time-Sensitive Embedding for Understanding Customer Navigational Behavior in Mobile Banking;Computational Intelligence, Data Analytics and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3