Few-shot Network Anomaly Detection via Cross-network Meta-learning
Author:
Affiliation:
1. Arizona State University, USA
2. University of Illinois Urbana-Champaign, USA
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3442381.3449922
Reference54 articles.
1. Graph based anomaly detection and description: a survey
2. Sambaran Bandyopadhyay N Lokesh and M Narasimha Murty. 2019. Outlier aware network embedding for attributed networks. In AAAI. Sambaran Bandyopadhyay N Lokesh and M Narasimha Murty. 2019. Outlier aware network embedding for attributed networks. In AAAI.
3. Markus M Breunig Hans-Peter Kriegel Raymond T Ng and Jörg Sander. 2000. LOF: identifying density-based local outliers. In SIGMOD. Markus M Breunig Hans-Peter Kriegel Raymond T Ng and Jörg Sander. 2000. LOF: identifying density-based local outliers. In SIGMOD.
4. Shaosheng Cao Wei Lu and Qiongkai Xu. 2016. Deep neural networks for learning graph representations. In AAAI. Shaosheng Cao Wei Lu and Qiongkai Xu. 2016. Deep neural networks for learning graph representations. In AAAI.
5. Kaize Ding Jundong Li Nitin Agarwal and Huan Liu. 2020. Inductive anomaly detection on attributed networks. In IJCAI. Kaize Ding Jundong Li Nitin Agarwal and Huan Liu. 2020. Inductive anomaly detection on attributed networks. In IJCAI.
Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Effective graph-neural-network based models for discovering Structural Hole Spanners in large-scale and diverse networks;Expert Systems with Applications;2024-09
2. Locally-adaptive mapping for network alignment via meta-learning;Information Processing & Management;2024-09
3. SLADE: Detecting Dynamic Anomalies in Edge Streams without Labels via Self-Supervised Learning;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24
4. Semi-supervised Graph Anomaly Detection via Multi-view Contrastive Learning;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30
5. Graph Anomaly Detection with Domain-Agnostic Pre-Training and Few-Shot Adaptation;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3