Project snowflake: non-blocking safe manual memory management in .NET

Author:

Parkinson Matthew1,Vytiniotis Dimitrios1,Vaswani Kapil1,Costa Manuel1,Deligiannis Pantazis1,McDermott Dylan2,Blankstein Aaron3,Balkind Jonathan3

Affiliation:

1. Microsoft Research, UK

2. University of Cambridge, UK

3. Princeton University, USA

Abstract

Garbage collection greatly improves programmer productivity and ensures memory safety. Manual memory management on the other hand often delivers better performance but is typically unsafe and can lead to system crashes or security vulnerabilities. We propose integrating safe manual memory management with garbage collection in the .NET runtime to get the best of both worlds. In our design, programmers can choose between allocating objects in the garbage collected heap or the manual heap. All existing applications run unmodified, and without any performance degradation, using the garbage collected heap. Our programming model for manual memory management is flexible: although objects in the manual heap can have a single owning pointer, we allow deallocation at any program point and concurrent sharing of these objects amongst all the threads in the program. Experimental results from our .NET CoreCLR implementation on real-world applications show substantial performance gains especially in multithreaded scenarios: up to 3x savings in peak working sets and 2x improvements in runtime.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Concurrent Immediate Reference Counting;Proceedings of the ACM on Programming Languages;2024-06-20

2. Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic;Proceedings of the ACM on Programming Languages;2023-10-16

3. A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts;2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2021-06

4. Efficiently reclaiming memory in concurrent search data structures while bounding wasted memory;Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming;2021-02-17

5. Investigation of the Dispose-Pattern Algorithm in Making Memory Management Decisions in the .NET Client-Component Model;МОДЕЛИРОВАНИЕ, ОПТИМИЗАЦИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ;2020-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3