Abstract
With the spread of broadband Internet, Real-Time Communication (RTC) platforms have become increasingly popular and have transformed the way people communicate. Thus, it is fundamental that the network adopts traffic management policies that ensure appropriate Quality of Experience to users of RTC applications. A key step for this is the identification of the applications behind RTC traffic, which in turn allows to allocate adequate resources and make decisions based on the specific application's requirements. In this paper, we introduce a machine learning-based system for identifying the traffic of RTC applications. It builds on the domains contacted before starting a call and leverages techniques from Natural Language Processing (NLP) to build meaningful features. Our system works in real-time and is robust to the peculiarities of the RTP implementations of different applications, since it uses only control traffic. Experimental results show that our approach classifies 5 well-known meeting applications with an F1 score of 0.89.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献