Optimizing bitmap indices with efficient compression

Author:

Wu Kesheng1,Otoo Ekow J.1,Shoshani Arie1

Affiliation:

1. Lawrence Berkeley National Laboratory, Berkeley, CA

Abstract

Bitmap indices are efficient for answering queries on low-cardinality attributes. In this article, we present a new compression scheme called Word-Aligned Hybrid (WAH) code that makes compressed bitmap indices efficient even for high-cardinality attributes. We further prove that the new compressed bitmap index, like the best variants of the B-tree index, is optimal for one-dimensional range queries. More specifically, the time required to answer a one-dimensional range query is a linear function of the number of hits. This strongly supports the well-known observation that compressed bitmap indices are efficient for multidimensional range queries because results of one-dimensional range queries computed with bitmap indices can be easily combined to answer multidimensional range queries. Our timing measurements on range queries not only confirm the linear relationship between the query response time and the number of hits, but also demonstrate that WAH compressed indices answer queries faster than the commonly used indices including projection indices, B-tree indices, and other compressed bitmap indices.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference34 articles.

1. Antoshenkov G. 1994. Byte-aligned bitmap compression. Tech. rep. Oracle Corp. Redwood Shores CA. U.S. Patent number 5 363 098.]] Antoshenkov G. 1994. Byte-aligned bitmap compression. Tech. rep. Oracle Corp. Redwood Shores CA. U.S. Patent number 5 363 098.]]

2. Query processing and optimization in Oracle Rdb

3. Bitmap index design and evaluation

4. An efficient bitmap encoding scheme for selection queries

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revisiting B-tree Compression: An Experimental Study;Proceedings of the ACM on Management of Data;2024-05-29

2. A 3.55 mJ/frame Energy-efficient Mixed-Transformer based Semantic Segmentation Accelerator for Mobile Devices;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

3. An Accurate and Invertible Sketch for Super Spread Detection;Electronics;2024-01-03

4. KV-CSD: A Hardware-Accelerated Key-Value Store for Data-Intensive Applications;2023 IEEE International Conference on Cluster Computing (CLUSTER);2023-10-31

5. Lossy Scientific Data Compression With SPERR;2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3