Communication Optimizations for Multithreaded Code Generation from Simulink Models

Author:

Huang Kai1,Yu Min1,Yan Rongjie2,Zhang Xiaomeng3,Yan Xiaolang3,Brisolara Lisane4,Jerraya Ahmed Amine5,Feng Jiong6

Affiliation:

1. Department of ISEE, Zhejiang University, Hangzhou, China

2. State Key Laboratory of Computer Science, Institute of Software, Beijing, China

3. College of EE, Zhejiang University

4. Universidate federal de pelotas, Pelotas, Brazil

5. University Grenoble Alpes, CEA, LETI, MINATEC Campus, Grenoble, France

6. Hangzhou C-SKY Micro-system Co. Ltd, Hangzhou, China

Abstract

Communication frequency is increasing with the growing complexity of emerging embedded applications and the number of processors in the implemented multiprocessor SoC architectures. In this article, we consider the issue of communication cost reduction during multithreaded code generation from partitioned Simulink models to help designers in code optimization to improve system performance. We first propose a technique combining message aggregation and communication pipeline methods, which groups communications with the same destinations and sources and parallelizes communication and computation tasks. We also present a method to apply static analysis and dynamic emulation for efficient communication buffer allocation to further reduce synchronization cost and increase processor utilization. The existing cyclic dependency in the mapped model may hinder the effectiveness of the two techniques. We further propose a set of optimizations involving repartition with strongly connected threads to maximize the degree of communication reduction and preprocessing strategies with available delays in the model to reduce the number of communication channels that cannot be optimized. Experimental results demonstrate the advantages of the proposed optimizations with 11--143% throughput improvement.

Funder

National Science Foundation of China

Fundamental Research Funds for the Central Universities

National Science and Technology Major Project of China

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3