Seam: provably safe local edits on graphs

Author:

Papadakis Manolis1,Bernstein Gilbert Louis1,Sharma Rahul2,Aiken Alex1,Hanrahan Pat1

Affiliation:

1. Stanford University, USA

2. Microsoft Research, India

Abstract

Algorithms that create and mutate graph data structures are challenging to implement correctly. However, verifying even basic properties of low-level implementations, such as referential integrity and memory safety, remains non-trivial. Furthermore, any extension to such a data structure multiplies the complexity of its implementation, while compounding the challenges in reasoning about correctness. We take a language design approach to this problem. We propose Seam, a language for expressing local edits to graph-like data structures, based on a relational data model, and such that data integrity can be verified automatically. We present a verification method that leverages an SMT solver, and prove it sound and precise (complete modulo termination of the SMT solver). We evaluate the verification capabilities of Seam empirically, and demonstrate its applicability to a variety of examples, most notably a new class of verification tasks derived from geometric remeshing operations used in scientific simulation and computer graphics. We describe our prototype implementation of a Seam compiler that generates low-level code, which can then be integrated into larger applications. We evaluate our compiler on a sample application, and demonstrate competitive execution time, compared to hand-written implementations.

Funder

National Nuclear Security Administration

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating the Relationship between Momentary Emotion Self-reports and Head and Eye Movements in HMD-based 360° VR Video Watching;Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems;2021-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3