Algorithmic Differentiation of Code with Multiple Context-Specific Activities

Author:

Hückelheim Jan Christian1ORCID,Hascoët Laurent2,Müller Jens-Dominik1

Affiliation:

1. Queen Mary University of London, London, UK

2. INRIA Sophia Antipolis, Valbonne, France

Abstract

Algorithmic differentiation (AD) by source-transformation is an established method for computing derivatives of computational algorithms. Static dataflow analysis is commonly used by AD tools to determine the set of active variables, that is, variables that are influenced by the program input in a differentiable way and have a differentiable influence on the program output. In this work, a context-sensitive static analysis combined with procedure cloning is used to generate specialised versions of differentiated procedures for each call site. This enables better detection and elimination of unused computations and memory storage, resulting in performance improvements of the generated code, in both forward- and reverse-mode AD. The implications of this multi-activity AD approach on the static analysis of an AD tool is shown using dataflow equations. The worst-case cost of multi-activity AD on the differentiation process is analysed and practical remedies to avoid running into this worst case are presented. The method was implemented in the AD tool Tapenade, and we present its application to a 3D unstructured compressible flow solver, for which we generate an adjoint solver that performs significantly faster when multi-activity AD is used.

Funder

INRIA

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference19 articles.

1. ADIFOR–Generating Derivative Codes from Fortran Programs

2. Pseudo-timestepping and verification for automatic differentiation derived CFD codes

3. Reverse accumulation and attractive fixed points

4. Ralf Giering. 1999. Tangent Linear and Adjoint Model Compiler Users Manual 1.4. Ralf Giering. 1999. Tangent Linear and Adjoint Model Compiler Users Manual 1.4.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3