Affiliation:
1. Tsinghua University, Haidian District, Beijing, China
2. Meituan-Dianping Group, Beijing, China
3. Tsinghua University, Shenzhen, China
Abstract
Smartphone mobile application (App) usage prediction, i.e., which Apps will be used next, is beneficial for user experience improvement. Through an in-depth analysis on a real-world dataset, we find that App usage is highly spatio-temporally correlated and personalized. Given the ability to model complex spatio-temporal contexts, we aim to apply deep learning to achieve high prediction accuracy. However, the personalization yields a problem: training one network for each individual suffers from data scarcity, yet training one deep neural network for all users often fails to uncover user preference. In this article, we propose a novel App usage prediction framework, named
DeepApp
, to achieve context-aware prediction via multi-task learning. To tackle the challenge of data scarcity, we train one general network for multiple users to share common patterns. To better utilize the spatio-temporal contexts, we supplement a location prediction task in the multi-task learning framework to learn spatio-temporal relations. As for the personalization, we add a user identification task to capture user preference. We evaluate DeepApp on the large-scale dataset by extensive experiments. Results demonstrate that DeepApp outperforms the start-of-the-art baseline by 6.44%.
Funder
Beijing Natural Science Foundation
Tsinghua University-Tencent Joint Laboratory for Internet Innovation Technology
National Key Research and Development Program of China
National Nature Science Foundation of China
Beijing National Research Center for Information Science and Technology
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献