Affiliation:
1. York Univ. North York, Ont., Canada
Abstract
In this paper, we show that the multifrontal method can have significant advantage over the conventional sparse column-Cholesky scheme on a paged virtual memory system. A more than tenfold reduction in paging activities can be achieved, which saves as much as 20 percent in factorization time. We also introduce a hybrid sparse factorization method, which uses a mixture of column-Cholesky and submatrix-Cholesky operations. By switching to the use of frontal matrices from column-Cholesky operations at appropriate columns, we demonstrate that the proposed hybrid scheme has an advantage over the sparse column-Cholesky method in reducing paging activities and over the multifrontal method in its adaptability to the amount of available working storage.
Publisher
Association for Computing Machinery (ACM)
Subject
Applied Mathematics,Software
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献