On-demand Personalized Explanation for Transparent Recommendation
Author:
Affiliation:
1. University of Duisburg-Essen, Germany
2. University of Duisburg Essen, Germany
3. University of Duisburg, Germany
4. National University of Sciences and Technology, Pakistan
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3450614.3464479
Reference23 articles.
1. Vijay Arya Rachel KE Bellamy Pin-Yu Chen Amit Dhurandhar Michael Hind Samuel C Hoffman Stephanie Houde Q Vera Liao Ronny Luss Aleksandra Mojsilović 2019. One explanation does not fit all: A toolkit and taxonomy of ai explainability techniques. arXiv preprint arXiv:1909.03012(2019). Vijay Arya Rachel KE Bellamy Pin-Yu Chen Amit Dhurandhar Michael Hind Samuel C Hoffman Stephanie Houde Q Vera Liao Ronny Luss Aleksandra Mojsilović 2019. One explanation does not fit all: A toolkit and taxonomy of ai explainability techniques. arXiv preprint arXiv:1909.03012(2019).
2. Crowd-Based Personalized Natural Language Explanations for Recommendations
3. What Is Personalization? Perspectives on the Design and Implementation of Personalization in Information Systems
4. How should I explain? A comparison of different explanation types for recommender systems
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Visualization for Recommendation Explainability: A Survey and New Perspectives;ACM Transactions on Interactive Intelligent Systems;2024-08-02
2. Balanced Explanations in Recommender Systems;Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-27
3. Designing Effective Warnings for Manipulative Designs in Mobile Applications;Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-22
4. User‐Centered Evaluation of Explainable Artificial Intelligence (XAI): A Systematic Literature Review;Human Behavior and Emerging Technologies;2024-01
5. Interactive Explanation with Varying Level of Details in an Explainable Scientific Literature Recommender System;International Journal of Human–Computer Interaction;2023-10-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3