OpenMP to GPGPU

Author:

Lee Seyong1,Min Seung-Jai1,Eigenmann Rudolf1

Affiliation:

1. Purdue University, West Lafayette, IN, USA

Abstract

GPGPUs have recently emerged as powerful vehicles for general-purpose high-performance computing. Although a new Compute Unified Device Architecture (CUDA) programming model from NVIDIA offers improved programmability for general computing, programming GPGPUs is still complex and error-prone. This paper presents a compiler framework for automatic source-to-source translation of standard OpenMP applications into CUDA-based GPGPU applications. The goal of this translation is to further improve programmability and make existing OpenMP applications amenable to execution on GPGPUs. In this paper, we have identified several key transformation techniques, which enable efficient GPU global memory access, to achieve high performance. Experimental results from two important kernels (JACOBI and SPMUL) and two NAS OpenMP Parallel Benchmarks (EP and CG) show that the described translator and compile-time optimizations work well on both regular and irregular applications, leading to performance improvements of up to 50X over the unoptimized translation (up to 328X over serial).

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference20 articles.

1. Automatic translation of FORTRAN programs to vector form

2. A compiler framework for optimization of affine loop nests for gpgpus

3. Towards automatic translation of OpenMP to MPI

4. NVIDIA CUDA {online}. available: http://developer.nvidia.com/object/cuda home.html. NVIDIA CUDA {online}. available: http://developer.nvidia.com/object/cuda home.html.

5. NVIDIA CUDA SDK - Data-Parallel Algorithms: Parallel Reduction {online}. available: http://developer.download.nvidia.com/compute/cuda/1 1/Website/Data-Parallel Algorithms.html. NVIDIA CUDA SDK - Data-Parallel Algorithms: Parallel Reduction {online}. available: http://developer.download.nvidia.com/compute/cuda/1 1/Website/Data-Parallel Algorithms.html.

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3