Efficient and scalable multiprocessor fair scheduling using distributed weighted round-robin

Author:

Li Tong1,Baumberger Dan1,Hahn Scott1

Affiliation:

1. Intel Corporation, Hillsboro, OR, USA

Abstract

Fairness is an essential requirement of any operating system scheduler. Unfortunately, existing fair scheduling algorithms are either inaccurate or inefficient and non-scalable for multiprocessors. This problem is becoming increasingly severe as the hardware industry continues to produce larger scale multi-core processors. This paper presents Distributed Weighted Round-Robin (DWRR), a new scheduling algorithm that solves this problem. With distributed thread queues and small additional overhead to the underlying scheduler, DWRR achieves high efficiency and scalability. Besides conventional priorities, DWRR enables users to specify weights to threads and achieve accurate proportional CPU sharing with constant error bounds. DWRR operates in concert with existing scheduler policies targeting other system attributes, such as latency and throughput. As a result, it provides a practical solution for various production OSes. To demonstrate the versatility of DWRR,we have implemented it in Linux kernels 2.6.22.15 and 2.6.24, which represent two vastly different scheduler designs. Our evaluation shows that DWRR achieves accurate proportional fairness and high performance for a diverse set of workloads.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3