Parallel thinking

Author:

Blelloch Guy E.1

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

Assuming that the multicore revolution plays out the way the microprocessor industry expects, it seems that within a decade most programming will involve parallelism at some level. One needs to ask how this affects the the way we teach computer science, or even how we have people think about computation. With regards to teaching there seem to be three basic choices: (1) we only train a small number of experts in parallel computation who develop a collection of libraries, and everyone else just uses them; (2) we leave our core curriculum pretty much as is, but add some advanced courses on parallelism or perhaps tack on a few lectures at the end of existing courses; or (3) we start teaching parallelism from the start and embed it throughout the curriculum with the idea of getting students to think about parallelism as the most natural form of computation and sequential computation as a special case. This talk will examine some of the implications of the third option. It will argue that thinking about parallelism, when treated in an appropriate way, might be as easy or easier that thinking sequentially. A key prerequisite, however, is to identify what the core ideas in parallelism are and how they might be layered and integrated with existing concepts. Another more difficult issue is how to cleanly integrate these ideas among courses. After all much of the success of sequential computation follows from the concept of a random access machine and its ability to serve as a simple, albeit imperfect, interface between programming languages, algorithm analysis, and hardware design. The talk will go through an initial list of some core ideas in parallelism, and an approach to integrating these ideas between parallel algorithms, programming languages, and, to some extent, hardware. This requires, however, moving away from the concept of a machine model as a interface for thinking about computation.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The World Teaching of Parallel and Distributed Programming;International Journal of Computer Architecture Education;2019-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3