Atomic quake

Author:

Zyulkyarov Ferad1,Gajinov Vladimir1,Unsal Osman S.1,Cristal Adrián1,Ayguadé Eduard1,Harris Tim2,Valero Mateo1

Affiliation:

1. Barcelona Supercomputing Center, Barcelona, Spain

2. Microsoft Research, Cambridge, England UK

Abstract

Transactional Memory (TM) is being studied widely as a new technique for synchronizing concurrent accesses to shared memory data structures for use in multi-core systems. Much of the initial work on TM has been evaluated using microbenchmarks and application kernels; it is not clear whether conclusions drawn from these workloads will apply to larger systems. In this work we make the first attempt to develop a large, complex, application that uses TM for all of its synchronization. We describe how we have taken an existing parallel implementation of the Quake game server and restructured it to use transactions. In doing so we have encountered examples where transactions simplify the structure of the program. We have also encountered cases where using transactions occludes the structure of the existing code. Compared with existing TM benchmarks, our workload exhibits non-block-structured transactions within which there are I/Ooperations and system call invocations. There are long and short running transactions (200-1.3M cycles) with small and large read and write sets (a few bytes to 1.5MB). There are nested transactions reaching up to 9 levels at runtime. There are examples where error handling and recovery occurs inside transactions. There are also examples where data changes between being accessed transactionally and accessed non-transactionally. However, we did not see examples where the kind of access to one piece of data depended on the value of another.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. When Is Parallelism Fearless and Zero-Cost with Rust?;Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures;2024-06-17

2. Pagoda: Towards Binary Code Privacy Protection with SGX-based Execute-Only Memory;2022 IEEE International Symposium on Secure and Private Execution Environment Design (SEED);2022-09

3. Understanding Flash-Based Storage I/O Behavior of Games;2021 IEEE 14th International Conference on Cloud Computing (CLOUD);2021-09

4. Mimosa: Protecting Private Keys Against Memory Disclosure Attacks Using Hardware Transactional Memory;IEEE Transactions on Dependable and Secure Computing;2021-05-01

5. OpenUVR: an Open-Source System Framework for Untethered Virtual Reality Applications;2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS);2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3