Minimizing Transmission Loss in Smart Microgrids by Sharing Renewable Energy

Author:

Huang Zhichuan1,Zhu Ting1,Irwin David2,Mishra Aditya3,Menasche Daniel4,Shenoy Prashant2

Affiliation:

1. University of Maryland, Baltimore County

2. University of Massachusetts, Amherst, MA, USA

3. Seattle University, WA, USA

4. Federal University of Rio de Janeiro, RJ, Brasil

Abstract

Renewable energy (e.g., solar energy) is an attractive option to provide green energy to homes. Unfortunately, the intermittent nature of renewable energy results in a mismatch between when these sources generate energy and when homes demand it. This mismatch reduces the efficiency of using harvested energy by either (i) requiring batteries to store surplus energy, which typically incurs ∼ 20% energy conversion losses, or (ii) using net metering to transmit surplus energy via the electric grid’s AC lines, which severely limits the maximum percentage of renewable penetration possible. In this article, we propose an alternative structure where nearby homes explicitly share energy with each other to balance local energy harvesting and demand in microgrids. We develop a novel energy sharing approach to determine which homes should share energy, and when to minimize system-wide energy transmission losses in the microgrid. We evaluate our approach in simulation using real traces of solar energy harvesting and home consumption data from a deployment in Amherst, MA. We show that our system (i) reduces the energy loss on the AC line by 64% without requiring large batteries, (ii) performance scales up with larger battery capacities, and (iii) is robust to different energy consumption patterns and energy prediction accuracy in the microgrid.

Funder

National Science Foundation

Massachusetts Department of Energy Resources

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3