1. DECAF: MEG-Based Multimodal Database for Decoding Affective Physiological Responses
2. Sulaiman Ainin , M. Muzamil Naqshbandi , Sedigheh Moghavvemi , and Noor Ismawati Jaafar . 2015. Facebook Usage , Socialization and Academic Performance. Computers & Education 83 (April 2015 ), 64--73. https://doi.org/10.1016/j.compedu.2014.12.018 10.1016/j.compedu.2014.12.018 Sulaiman Ainin, M. Muzamil Naqshbandi, Sedigheh Moghavvemi, and Noor Ismawati Jaafar. 2015. Facebook Usage, Socialization and Academic Performance. Computers & Education 83 (April 2015), 64--73. https://doi.org/10.1016/j.compedu.2014.12.018
3. Rasha M. Al-Eidan , Hend Al-Khalifa , and Abdul Malik Al-Salman . 2018. A Review of Wrist-Worn Wearable: Sensors, Models, and Challenges. Journal of Sensors 2018 (Dec . 2018 ), 1--20. https://doi.org/10.1155/2018/5853917 10.1155/2018 Rasha M. Al-Eidan, Hend Al-Khalifa, and Abdul Malik Al-Salman. 2018. A Review of Wrist-Worn Wearable: Sensors, Models, and Challenges. Journal of Sensors 2018 (Dec. 2018), 1--20. https://doi.org/10.1155/2018/5853917
4. Study Behaviors and Their Relationships to Test Anxiety and Academic Performance
5. Constantino Álvarez Casado , Petteri Paananen , Pekka Siirtola , Susanna Pirttikangas , and Miguel Bordallo López . 2021 . Meditation Detection Using Sensors from Wearable Devices . In Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers (UbiComp '21) . Association for Computing Machinery, New York, NY, USA, 112--116. https://doi.org/10.1145/3460418.3479318 10.1145/3460418.3479318 Constantino Álvarez Casado, Petteri Paananen, Pekka Siirtola, Susanna Pirttikangas, and Miguel Bordallo López. 2021. Meditation Detection Using Sensors from Wearable Devices. In Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers (UbiComp '21). Association for Computing Machinery, New York, NY, USA, 112--116. https://doi.org/10.1145/3460418.3479318