1. Kamath, G.M. et al. 2016. HINGE: Long-Read Assembly Achieves Optimal Repeat Resolution. biorxiv. 62117. DOI= https://doi.org/https://doi.org/10.1101/062117.
2. Kingma, D.P. and Welling, M. 2014. Auto-Encoding Variational Bayes. Proceedings of the 2nd International Conference on Learning Representations (ICLR) (Dec. 2014).
3. Koren, S. et al. 2016. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. biorxiv. (2016), 71282. DOI= https://doi.org/10.1101/071282.
4. Li, H. 2016. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics. 32, 14 (Jul. 2016), 2103--2110. DOI= https://doi.org/10.1093/bioinformatics/btw152.
5. van der Maaten, L.J.P. and Hinton, G.E. 2008. Visualizing High-Dimensional Data Using t-SNE. The Journal of Machine Learning Research. 9, 2579--2605.