Exploiting Spatial-Temporal Context for Interacting Hand Reconstruction on Monocular RGB Video

Author:

Zhao Weichao1,Hu Hezhen1,Zhou Wengang1,Li Li1,Li Houqiang1

Affiliation:

1. University of Science and Technology of China, China

Abstract

Reconstructing interacting hands from monocular RGB data is a challenging task, as it involves many interfering factors, e.g. self- and mutual occlusion and similar textures. Previous works only leverage information from a single RGB image without modeling their physically plausible relation, which leads to inferior reconstruction results. In this work, we are dedicated to explicitly exploiting spatial-temporal information to achieve better interacting hand reconstruction. On one hand, we leverage temporal context to complement insufficient information provided by the single frame, and design a novel temporal framework with a temporal constraint for interacting hand motion smoothness. On the other hand, we further propose an interpenetration detection module to produce kinetically plausible interacting hands without physical collisions. Extensive experiments are performed to validate the effectiveness of our proposed framework, which achieves new state-of-the-art performance on public benchmarks.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference58 articles.

1. Luca Ballan, Aparna Taneja, Jürgen Gall, Luc Van Gool, and Marc Pollefeys. 2012. Motion capture of hands in action using discriminative salient points. In Proceedings of the European Conference on Computer Vision. 640–653.

2. 3D Hand Shape and Pose From Images in the Wild

3. Weakly-Supervised 3D Hand Pose Estimation from Monocular RGB Images

4. Yujin Chen, Zhigang Tu, Di Kang, Linchao Bao, Ying Zhang, Xuefei Zhe, Ruizhi Chen, and Junsong Yuan. 2021. Model-based 3D hand reconstruction via self-supervised learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 10451–10460.

5. ImageNet: A large-scale hierarchical image database

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3