RT-ZooKeeper: Taming the Recovery Latency of a Coordination Service

Author:

Li Haoran1,Lu Chenyang1,Gill Christopher D.1

Affiliation:

1. Cyber-Physical SystemsLaboratory, Washington University in St. Louis, St. Louis, MO, USA

Abstract

Fault-tolerant coordination services have been widely used in distributed applications in cloud environments. Recent years have witnessed the emergence of time-sensitive applications deployed in edge computing environments, which introduces both challenges and opportunities for coordination services. On one hand, coordination services must recover from failures in a timely manner. On the other hand, edge computing employs local networked platforms that can be exploited to achieve timely recovery. In this work, we first identify the limitations of the leader election and recovery protocols underlying Apache ZooKeeper, the prevailing open-source coordination service. To reduce recovery latency from leader failures, we then design RT-Zookeeper with a set of novel features including a fast-convergence election protocol, a quorum channel notification mechanism, and a distributed epoch persistence protocol. We have implemented RT-Zookeeper based on ZooKeeper version 3.5.8. Empirical evaluation shows that RT-ZooKeeper achieves 91% reduction in maximum recovery latency in comparison to ZooKeeper. Furthermore, a case study demonstrates that fast failure recovery in RT-ZooKeeper can benefit a common messaging service like Kafka in terms of message latency.

Funder

NSF

Fullgraf Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference39 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural architecture search for image super-resolution: A review on the emerging state-of-the-art;Neurocomputing;2024-12

2. Fasor: A Fast Tensor Program Optimization Framework for Efficient DNN Deployment;Proceedings of the 38th ACM International Conference on Supercomputing;2024-05-30

3. Neural architecture search for in-memory computing-based deep learning accelerators;Nature Reviews Electrical Engineering;2024-05-20

4. AlterEgo;Proceedings of the 7th International Workshop on Edge Systems, Analytics and Networking;2024-04-22

5. AutoML: A systematic review on automated machine learning with neural architecture search;Journal of Information and Intelligence;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3