Discovering Partial Periodic Itemsets in Temporal Databases
Author:
Affiliation:
1. National Institute of Information and Communications Technology, Tokyo, Japan and University of Tokyo, Tokyo, Japan
2. University of Tokyo, Tokyo, Japan
3. University of Tokyo, Tokyo, Japan and National Institute of Informatics, Tokyo, Japan
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3085504.3085535
Reference19 articles.
1. Rakesh Agrawal Tomasz Imieliński and Arun Swami. 1993. Mining association rules between sets of items in large databases. In SIGMOD. 207--216. 10.1145/170035.170072 Rakesh Agrawal Tomasz Imieliński and Arun Swami. 1993. Mining association rules between sets of items in large databases. In SIGMOD. 207--216. 10.1145/170035.170072
2. Komate Amphawan Philippe Lenca and Athasit Surarerks. 2009. Mining Top-K Periodic-Frequent Pattern from Transactional Databases without Support Threshold. In Advances in Information Technology. 18--29. Komate Amphawan Philippe Lenca and Athasit Surarerks. 2009. Mining Top-K Periodic-Frequent Pattern from Transactional Databases without Support Threshold. In Advances in Information Technology. 18--29.
3. Incremental, online, and merge mining of partial periodic patterns in time-series databases
4. Jiawei Han Wan Gong and Yiwen Yin. 1998. Mining Segment-Wise Periodic Patterns in Time-Related Databases.. In KDD. 214--218. Jiawei Han Wan Gong and Yiwen Yin. 1998. Mining Segment-Wise Periodic Patterns in Time-Related Databases.. In KDD. 214--218.
5. Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 3P-ECLAT: mining partial periodic patterns in columnar temporal databases;Applied Intelligence;2023-12-16
2. Periodic-confidence: a null-invariant measure to discover partial periodic patterns in non-uniform temporal databases;International Journal of Data Science and Analytics;2023-10-19
3. Mining periodic trends via closed high utility patterns;Expert Systems with Applications;2023-10
4. Finding Partial Periodic and Rare Periodic Patterns in Temporal Databases;IEEE Access;2023
5. Discovering Top-K Partial Periodic Patterns in Big Temporal Databases;Lecture Notes in Computer Science;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3