Incremental Temporal Pattern Mining Using Efficient Batch-Free Stream Clustering
Author:
Affiliation:
1. Institute for Informatics, Ludwig-Maximilians-Universität, Munich, Germany
2. Architecture of Information Systems Group, Eindhoven University of Technology, Eindhoven, Netherlands
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3085504.3085511
Reference30 articles.
1. Rakesh Agrawal and Ramakrishnan Srikant. 1995. Mining sequential patterns. In ICDE. IEEE 3--14. Rakesh Agrawal and Ramakrishnan Srikant. 1995. Mining sequential patterns. In ICDE. IEEE 3--14.
2. Maintaining knowledge about temporal intervals
3. Feng Cao Martin Ester Weining Qian and Aoying Zhou. 2006. Density-Based Clustering over an Evolving Data Stream with Noise. In SDM. SIAM 328--339. Feng Cao Martin Ester Weining Qian and Aoying Zhou. 2006. Density-Based Clustering over an Evolving Data Stream with Noise. In SDM. SIAM 328--339.
4. Chung-i Chang and Nancy P Lin. 2009. Sequential Patterns Mining with Fuzzy Time-Intervals. ICSAI (2009) 165--169. Chung-i Chang and Nancy P Lin. 2009. Sequential Patterns Mining with Fuzzy Time-Intervals. ICSAI (2009) 165--169.
5. SeqStream: Mining Closed Sequential Patterns over Stream Sliding Windows
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Using Human Mobility Patterns to Forecast Outliers in Citizen Complaints Data;2023 IEEE International Conference on Big Data (BigData);2023-12-15
2. Enhancing LSTM Prediction of Vehicle Traffic Flow Data via Outlier Correlations;2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC);2021-07
3. Batch-Free Event Sequence Pattern Mining for Communication Stream Data with Instant and Persistent Events;Wireless Personal Communications;2018-10-12
4. Towards Effective Generation of Synthetic Memory References Via Markovian Models;2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC);2018-07
5. BFSPMiner: an effective and efficient batch-free algorithm for mining sequential patterns over data streams;International Journal of Data Science and Analytics;2017-12-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3