Federated Learning-based Information Leakage Risk Detection for Secure Medical Internet of Things

Author:

Wang Tingting1,Tang Tao2,Cai Zhen2,Fang Kai1,Tian Jinyu1,Li Jianqing1,Wang Wei3,Xia Feng4

Affiliation:

1. School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau SAR 999078,

2. Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia,

3. Guangdong-Hong Kong-Macao Joint Laboratory for Emotion Intelligence and Pervasive Computing, Artificial Intelligence Research Institute, Shenzhen MSU-BIT University, Shenzhen 518172, China,

4. School of Computing Technologies, RMIT University, Melbourne, VIC 3000, Australia,

Abstract

The Medical Internet of Things (MIoT) requires extreme information and communication security, particularly for remote consultation systems. MIoT’s integration of physical and computational components creates a seamless network of medical devices providing high-quality care via continuous monitoring and treatment. However, traditional security methods such as cryptography cannot prevent privacy compromise and information leakage caused by security breaches. To solve this issue, this paper proposes a novel Federated Learning Intrusion Detection System (FLIDS). FLIDS combines Generative Adversarial Network (GAN) and Federated Learning (FL) to detect cyber attacks like Denial of Service (DoS), data modification, and data injection using machine learning. FLIDS shows exceptional performance with over 99% detection accuracy and 1% False Positive Rate (FPR). It saves bandwidth by transmitting 3.8 times fewer bytes compared to central data collection. These results prove FLIDS’ effectiveness in detecting and mitigating security threats in Medical Cyber-Physical Systems (MCPS). The paper recommends scaling up FLIDS to use computing resources from multiple mobile devices for better intrusion detection accuracy and efficiency while reducing the burden on individual devices in MIoT.

Publisher

Association for Computing Machinery (ACM)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3