1. Markus Borg Cristofer Englund etal 2018. Safely entering the deep: A review of verification and validation for machine learning and a challenge elicitation in the automotive industry. arXiv preprint arXiv:1812.05389 (2018). Markus Borg Cristofer Englund et al. 2018. Safely entering the deep: A review of verification and validation for machine learning and a challenge elicitation in the automotive industry. arXiv preprint arXiv:1812.05389 (2018).
2. Practical Causal Models for Cyber-Physical Systems
3. Franz Meierhöfer , Roland Weiss , 2021 . Specification for selected pilots / use cases. Technical Report 957197. Horizon 2020 Research Framework. https://vedliot.eu/deliverable/deliverable-d23/ Franz Meierhöfer, Roland Weiss, et al. 2021. Specification for selected pilots / use cases. Technical Report 957197. Horizon 2020 Research Framework. https://vedliot.eu/deliverable/deliverable-d23/
4. Judea Pearl . 2009. Causal inference in statistics: An overview. Statistics surveys 3 ( 2009 ), 96--146. Judea Pearl. 2009. Causal inference in statistics: An overview. Statistics surveys 3 (2009), 96--146.
5. Judea Pearl . 2019. The Limitations of Opaque Learning Machines . In Possible Minds: 25 Ways of Looking at AI , Johnm Brockman (Ed.). Penguin Press , London, Chapter 2. Judea Pearl. 2019. The Limitations of Opaque Learning Machines. In Possible Minds: 25 Ways of Looking at AI, Johnm Brockman (Ed.). Penguin Press, London, Chapter 2.