Multi-modal program inference: a marriage of pre-trained language models and component-based synthesis

Author:

Rahmani Kia1,Raza Mohammad2,Gulwani Sumit2,Le Vu2,Morris Daniel2,Radhakrishna Arjun2,Soares Gustavo2,Tiwari Ashish2

Affiliation:

1. Purdue University, USA

2. Microsoft, USA

Abstract

Multi-modal program synthesis refers to the task of synthesizing programs (code) from their specification given in different forms, such as a combination of natural language and examples. Examples provide a precise but incomplete specification, and natural language provides an ambiguous but more "complete" task description. Machine-learned pre-trained models (PTMs) are adept at handling ambiguous natural language, but struggle with generating syntactically and semantically precise code. Program synthesis techniques can generate correct code, often even from incomplete but precise specifications, such as examples, but they are unable to work with the ambiguity of natural languages. We present an approach that combines PTMs with component-based synthesis (CBS): PTMs are used to generate candidates programs from the natural language description of the task, which are then used to guide the CBS procedure to find the program that matches the precise examples-based specification. We use our combination approach to instantiate multi-modal synthesis systems for two programming domains: the domain of regular expressions and the domain of CSS selectors. Our evaluation demonstrates the effectiveness of our domain-agnostic approach in comparison to a state-of-the-art specialized system, and the generality of our approach in providing multi-modal program synthesis from natural language and examples in different programming domains.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structure and design of multimodal dataset for automatic regex synthesis methods in Roman Urdu;International Journal of Data Science and Analytics;2024-07-23

2. PyDex: Repairing Bugs in Introductory Python Assignments using LLMs;Proceedings of the ACM on Programming Languages;2024-04-29

3. Programming-by-Demonstration for Long-Horizon Robot Tasks;Proceedings of the ACM on Programming Languages;2024-01-05

4. Survey of intelligent program synthesis techniques;International Conference on Algorithms, High Performance Computing, and Artificial Intelligence (AHPCAI 2023);2023-12-07

5. FormaT5: Abstention and Examples for Conditional Table Formatting with Natural Language;Proceedings of the VLDB Endowment;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3