FAJITA: Stateful Packet Processing at 100 Million pps

Author:

Ghasemirahni Hamid1ORCID,Farshin Alireza2ORCID,Scazzariello Mariano1ORCID,Maguire Gerald Q.1ORCID,Kostić Dejan1ORCID,Chiesa Marco1ORCID

Affiliation:

1. KTH Royal Institute of Technology, Stockholm, Sweden

2. NVIDIA, Stockholm, Sweden

Abstract

Data centers increasingly utilize commodity servers to deploy low-latency Network Functions (NFs). However, the emergence of multi-hundred-gigabit-per-second network interface cards (NICs) has drastically increased the performance expected from commodity servers. Additionally, recently introduced systems that store packet payloads in temporary off-CPU locations (e.g., programmable switches, NICs, and RDMA servers) further increase the load on NF servers, making packet processing even more challenging. This paper demonstrates existing bottlenecks and challenges of state-of-the-art stateful packet processing frameworks and proposes a system, called FAJITA, to tackle these challenges & accelerate stateful packet processing on commodity hardware. FAJITA proposes an optimized processing pipeline for stateful network functions to minimize memory accesses and overcome the overheads of accessing shared data structures while ensuring efficient batch processing at every stage of the pipeline. Furthermore, FAJITA provides a performant architecture to deploy high-performance network functions service chains containing stateful elements with different state granularities. FAJITA improves the throughput and latency of high-speed stateful network functions by ~2.43x compared to the most performant state-of-the-art solutions, enabling commodity hardware to process up to ~178 Million 64-B packets per second (pps) using 16 cores.

Funder

Vinnova

KTH Digital Futures

European Research Council

Swedish Research Council

Publisher

Association for Computing Machinery (ACM)

Reference63 articles.

1. Intel Barefoot Networks. Tofino-2 Second-generation of World's fastest P4-programmable Ethernet switch ASICs, 2020. https://www.barefootnetworks.com/products/brief-tofino-2/.

2. NVIDIA Mellanox. ConnectX-7 400G Adapters 2024. https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernetdatasheet- connectx-7-ds-nv-us-2544471.

3. Zhiping Yao, Jasmeet Bagga, Hany Morsy. Introducing Backpack: Our second-generation modular open switch, November 2016. https://engineering.fb.com/data-center-engineering/introducing-backpack-our-second-generationmodular- open-switch/.

4. Dark packets and the end of network scaling

5. Shelby Thomas, Geoffrey M. Voelker, and George Porter. CacheCloud: Towards Speed-of-light Datacenter Communication. In 10th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 18), Boston, MA, July 2018. USENIX Association. https://www.usenix.org/system/files/conference/hotcloud18/hotcloud18-paper-thomas.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3