Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance
Author:
Affiliation:
1. University of Washington, United States
2. Paul G. Allen School of Computer Science & Engineering University of Washington, United States
3. Microsoft Research, United States
Funder
Microsoft Research
the University of Washington WRF/Cable Professorship
Office of Naval Research
NSF RAPID grant
the Allen Institute for Artificial Intelligence (AI2)
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3411764.3445717
Reference83 articles.
1. Julia Angwin Jeff Larson Surya Mattu and Lauren Kirchner. 2016. Machine bias: There’s software across the country to predict future criminals and it’s biased against blacks. Julia Angwin Jeff Larson Surya Mattu and Lauren Kirchner. 2016. Machine bias: There’s software across the country to predict future criminals and it’s biased against blacks.
2. Teaching Categories to Human Learners with Visual Explanations
3. Gagan Bansal Besmira Nushi Ece Kamar Eric Horvitz and Daniel S. Weld. 2020. Optimizing AI for Teamwork. arxiv:2004.13102 [cs.AI] Gagan Bansal Besmira Nushi Ece Kamar Eric Horvitz and Daniel S. Weld. 2020. Optimizing AI for Teamwork. arxiv:2004.13102 [cs.AI]
Cited by 226 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Majority voting of doctors improves appropriateness of AI reliance in pathology;International Journal of Human-Computer Studies;2024-10
2. To Err Is AI! Debugging as an Intervention to Facilitate Appropriate Reliance on AI Systems;Proceedings of the 35th ACM Conference on Hypertext and Social Media;2024-09-10
3. Evaluating quality of ontology-driven conceptual models abstractions;Data & Knowledge Engineering;2024-09
4. You Can Only Verify When You Know the Answer: Feature-Based Explanations Reduce Overreliance on AI for Easy Decisions, but Not for Hard Ones;Proceedings of Mensch und Computer 2024;2024-09
5. Human-AI Teamwork Interface Design Using Patterns of Interactions;International Journal of Human–Computer Interaction;2024-08-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3