A comparison of adaptive wormhole routing algorithms

Author:

Boppana Rajendra V.,Chalasani Suresh

Abstract

Improvement of message latency and network utilization in torus interconnection networks by increasing adaptivity in wormhole routing algorithms is studied. A recently proposed partially adaptive algorithm and four new fully-adaptive routing algorithms are compared with the well-known e-cube algorithm for uniform, hotspot, and local traffic patterns. Our simulations indicate that the partially adaptive north-last algorithm, which causes unbalanced traffic in the network, performs worse than the nonadaptive e-cube routing algorithm for all three traffic patterns. Another result of our study is that the performance does not necessarily improve with full-adaptivity. In particular, a commonly discussed fully-adaptive routing algorithm, which uses 2 n virtual channels per physical channel of a k-ary n-cube, performs worse than e-cube for uniform and hotspot traffic patterns. The other three fully-adaptive algorithms, which give priority to messages based on distances traveled, perform much better than the e-cube and partially-adaptive algorithms for all three traffic patterns. One of the conclusions of this study is that adaptivity, full or partial, is not necessarily a benefit in wormhole routing.

Publisher

Association for Computing Machinery (ACM)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive Survey on Wireless Network on Chips;Algorithms for Intelligent Systems;2022

2. A study of multistage interconnection networks operating with wormhole routing and equipped with multi-lane storage;International Journal of Parallel, Emergent and Distributed Systems;2020-07-18

3. Reliable Weighted Globally Congestion Aware Routing for Network on Chip;International Journal of Embedded and Real-Time Communication Systems;2020-07

4. 3DEP: A Efficient Routing Algorithm to Evenly Distribute Traffic Over 3D Network-on-Chips;2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP);2019-02

5. Bi-Objective Cost Function for Adaptive Routing in Network-on-Chip;IEEE Transactions on Multi-Scale Computing Systems;2018-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3