Author:
Herlihy Maurice,Moss J. Eliot B.
Abstract
A shared data structure is
lock-free
if its operations do not require mutual exclusion. If one process is interrupted in the middle of an operation, other processes will not be prevented from operating on that object. In highly concurrent systems, lock-free data structures avoid common problems associated with conventional locking techniques, including priority inversion, convoying, and difficulty of avoiding deadlock. This paper introduces
transactional memory
, a new multiprocessor architecture intended to make lock-free synchronization as efficient (and easy to use) as conventional techniques based on mutual exclusion. Transactional memory allows programmers to define customized read-modify-write operations that apply to multiple, independently-chosen words of memory. It is implemented by straightforward extensions to any multiprocessor cache-coherence protocol. Simulation results show that transactional memory matches or outperforms the best known locking techniques for simple benchmarks, even in the absence of priority inversion, convoying, and deadlock.
Publisher
Association for Computing Machinery (ACM)
Cited by
365 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献