Symbolic execution for randomized programs

Author:

Susag Zachary1ORCID,Lahiri Sumit2ORCID,Hsu Justin1ORCID,Roy Subhajit2ORCID

Affiliation:

1. Cornell University, USA

2. IIT Kanpur, India

Abstract

We propose a symbolic execution method for programs that can draw random samples. In contrast to existing work, our method can verify randomized programs with unknown inputs and can prove probabilistic properties that universally quantify over all possible inputs. Our technique augments standard symbolic execution with a new class of probabilistic symbolic variables , which represent the results of random draws, and computes symbolic expressions representing the probability of taking individual paths. We implement our method on top of the KLEE symbolic execution engine alongside multiple optimizations and use it to prove properties about probabilities and expected values for a range of challenging case studies written in C++, including Freivalds’ algorithm, randomized quicksort, and a randomized property-testing algorithm for monotonicity. We evaluate our method against Psi, an exact probabilistic symbolic inference engine, and Storm, a probabilistic model checker, and show that our method significantly outperforms both tools.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Deductive Verification Infrastructure for Probabilistic Programs;Proceedings of the ACM on Programming Languages;2023-10-16

2. An Integrated Program Analysis Framework for Graduate Courses in Programming Languages and Software Engineering;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

3. A Theorem Proving Approach to Programming Language Semantics;2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET);2023-05

4. Symbolic Semantics for Probabilistic Programs;Quantitative Evaluation of Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3