Affiliation:
1. Universidad Politécnica de Madrid, Madrid, Spain
Abstract
Analyzing a user's first impression of a Web site is essential for interface designers, as it is tightly related to their overall opinion of a site. In fact, this early evaluation affects user navigation behavior. Perceived usability and user interest (e.g., revisiting and recommending the site) are parameters influenced by first opinions. Thus, predicting the latter when creating a Web site is vital to ensure users’ acceptance. In this regard, Web aesthetics is one of the most influential factors in this early perception. We propose the use of low-level image parameters for modeling Web aesthetics in an objective manner, which is an innovative research field. Our model, obtained by applying a stepwise multiple regression algorithm, infers a user's first impression by analyzing three different visual characteristics of Web site screenshots—texture, luminance, and color—which are directly derived from MPEG-7 descriptors. The results obtained over three wide Web site datasets (composed by 415, 42, and 6 Web sites, respectively) reveal a high correlation between low-level parameters and the users’ evaluation, thus allowing a more precise and objective prediction of users’ opinion than previous models that are based on other image characteristics with fewer predictors. Therefore, our model is meant to support a rapid assessment of Web sites in early stages of the design process to maximize the likelihood of the users’ final approval.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献