NeuroHSMD: Neuromorphic Hybrid Spiking Motion Detector

Author:

Machado Pedro1ORCID,Ferreira João Filipe1ORCID,Oikonomou Andreas1ORCID,McGinnity T. M.2ORCID

Affiliation:

1. Department of Computer Science, School of Science and Technology, Nottingham Trent University

2. Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University

Abstract

Vertebrate retinas are highly-efficient in processing trivial visual tasks such as detecting moving objects, which still represent complex challenges for modern computers. In vertebrates, the detection of object motion is performed by specialised retinal cells named Object Motion Sensitive Ganglion Cells (OMS-GC). OMS-GC process continuous visual signals and generate spike patterns that are post-processed by the Visual Cortex. Our previous Hybrid Sensitive Motion Detector (HSMD) algorithm was the first hybrid algorithm to enhance Background subtraction (BS) algorithms with a customised 3-layer Spiking Neural Network (SNN) that generates OMS-GC spiking-like responses. In this work, we present a Neuromorphic Hybrid Sensitive Motion Detector (NeuroHSMD) algorithm that accelerates our HSMD algorithm using Field-Programmable Gate Arrays (FPGAs). The NeuroHSMD was compared against the HSMD algorithm, using the same 2012 Change Detection (CDnet2012) and 2014 Change Detection (CDnet2014) benchmark datasets. When tested against the CDnet2012 and CDnet2014 datasets, NeuroHSMD performs object motion detection at 720 × 480 at 28.06 Frames Per Second (fps) and 720 × 480 at 28.71 fps, respectively, with no degradation of quality. Moreover, the NeuroHSMD proposed in this article was completely implemented in Open Computer Language (OpenCL) and therefore is easily replicated in other devices such as Graphical Processing Units (GPUs) and clusters of Central Processing Units (CPUs).

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3