Personality Detection using Kernel-based Ensemble Model for Leveraging Social Psychology in Online Networks

Author:

Kumar Akshi1ORCID,Beniwal Rohit2ORCID,Jain Dipika2ORCID

Affiliation:

1. Department of Computing & Mathematics, Manchester Metropolitan University, Manchester, United Kingdom

2. Department of Computer Science & Engineering, Delhi Technological University, New Delhi, India

Abstract

The Asian social networking market dominates the world landscape with the highest consumer penetration rate. Businesses and investors often look for winning strategies to attract consumers to increase revenues from sales, advertisements, and other services offered on social media platforms. Social media engagement and online relational cohesion have often been defined within the frameworks of social psychology and personality identification is a possible way in which social psychology can inform, engage, and learn from social media. Personality profiling has many real-world applications, including preference-based recommendation systems, relationship building, and career counseling. This research puts forward a novel kernel-based soft-voting ensemble model for personality detection from natural language, KBSVE-P. The KBSVE-P model is built by first evaluating the performance of various Support Vector Machine (SVM) kernels, namely radial basis function (RBF), linear, sigmoidal, and polynomial, to find the best-suited kernel for automatic personality detection in natural language text. Next, an ensemble of SVM kernels is implemented with a variety of voting techniques, such as soft voting, hard voting, and weighted hard voting. The model is evaluated on the publicly available Kaggle_MBTI dataset and a novel South Asian, Indian, low-resource Hindi language_MBTI (pronounced as vishesh charitr, meaning personality in Hindi) dataset for detecting a user's personality across four personality traits, namely introvert/extrovert (IE), thinking/feeling (TF), sensing/intuitive (SI), and judging/perceiving (JP). The proposed kernel-based ensemble with soft voting, KBSVE-P, outperforms the existing models on English Kaggle-MBTI dataset with an average F-score of 85.677 and achieves an accuracy of 66.89 for the Hindi_MBTI dataset.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference38 articles.

1. M. R. Aulia, E. C. Djamal, and A. T. Bon. 2020. Personality identification based on handwritten signature using convolutional neural networks. In Proceedings of the 5th NA International Conference on Industrial Engineering and Operations Management Detroit.

2. Personality Identification of Palmprint Using Convolutional Neural Networks

3. Bottom-Up and Top-Down: Predicting Personality with Psycholinguistic and Language Model Features

4. Recent trends in deep learning based personality detection

5. Persona Traits Identification based on Myers-Briggs Type Indicator(MBTI) - A Text Classification Approach

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3