Data structures for quadtree approximation and compression

Author:

Samet Hanan1

Affiliation:

1. Univ. of Maryland, College Park

Abstract

A number of data structures for representing images by quadtrees without pointers are discussed. The image is treated as a collection of leaf nodes. Each leaf node is represented by use of a locational code corresponding to a sequence of directional codes that locate the leaf along a path from the root of the tree. Somewhat related is the concept of a forest which is a representation that consists of a collection of maximal blocks. It is reviewed and refined to enable the representation of a quadtree as a sequence of approximations. In essence, all BLACK and WHITE nodes are said to be of type GB and GW, respectively. GRAY nodes are of type GB if at least two of their sons are of type GB; otherwise, they are of type GW. Sequences of approximations using various combinations of locational codes of GB and GW nodes are proposed and shown to be superior to approximation methods based on truncation of nodes below a certain level in the tree. These approximations have two important properties. First, they are progressive in the sense that as more of the image is transmitted, the receiving device can construct a better approximation (contrast with facsimile methods which transmit the image one line at a time). Second, they are proved to lead to compression in the sense that they never require more than MIN(B, W) nodes where B and W correspond to the number of BLACK and WHITE nodes in the original quadtree. Algorithms are given for constructing the approximation sequences as well as decoding them to rebuild the original quadtree.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3